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Abstract
Coarse-grained models of monolayers of amphiphiles (Langmuir monolayers)
have been studied theoretically and by means of computer simulations. We
discuss some of the insights obtained with this approach, and present new
simulation results which show that idealized models can successfully reproduce
essential aspects of the generic phase behaviour of Langmuir monolayers.

1. Introduction

Amphiphilic molecules are made up of two distinct components: a hydrophilic part which
dissolves easily in water (‘loves water’), and a hydrophobic part which is repelled by water
(‘fears water’). In an aqueous environment, they assemble such that the hydrophobic parts
of the molecules are shielded from the water by the hydrophilic ones. As a result, a rich
variety of ordered and disordered structures emerge, featuring internal ‘interfaces’ that separate
hydrophobic from hydrophilic regions [1].

Among these, bilayer structures are receiving special attention because they are
fundamental ingredients of biological membranes and, thus, basic constituents of all living
organisms [2]. They are typically formed by molecules which have one hydrophilic ‘head
group’ attached to one or more hydrophobic hydrocarbon chains, e.g., lipids or fatty acids.
In water, the molecules may, in certain parameter regions, aggregate into stacks of planar
bilayers. These lamellar phases often exist in several variations: with decreasing temperature,
they undergo a first-order transition (‘main transition’) from a high-temperature ‘fluid’ phase
to a low-temperature ‘gel’ phase, which is characterized by higher bilayer thickness, lower
chain mobility, and higher chain ordering. Depending on the chain length and the bulkiness
of the polar head group, different gel phases can be found, some with chains oriented on
average perpendicular to the lamellar surface, and some with collectively tilted chains. In
systems with bulky head groups, the strictly planar gel phase is often pre-empted by one with
asymmetric wavy undulations (‘ripple’ phase). Theoretical considerations have suggested that
the latter may be related to tilt order in the bilayers [3]. From an experimental point of view,
the question of whether the chains in the ripple phase are tilted or not is still debated [4,5]. In
biological systems, membranes are usually maintained in the fluid state by the living organism.
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Nevertheless, the main transition is presumably of some relevance in the biological context,
as it occurs at temperatures very close to the body temperature for some of the most common
bilayer lipids (e.g., 41.5 ◦C in DPPC).

To assess phenomena of this type, people have been studying Langmuir monolayers for
many years as model systems that are particularly accessible in experiments [6]. Such mono-
layers form when amphiphilic molecules of sufficient chain length are spread onto an air–water
interface. At low surface coverage, the molecules do not interact with each other and form
what is the two-dimensional analogue of a gas. Upon compression, the system exhibits a first-
order ‘gas–liquid’ transition to a phase where the molecules form a continuous monolayer
whose behaviour resembles, in some sense, that of the corresponding bilayer. In particular,
one observes a monolayer equivalent of the main transition—a first-order transition between
two liquid states: the ‘liquid expanded’ (LE) and the ‘liquid condensed’ (LC) state. As in the
bilayer case, several phases are present in the condensed region, which differ in the tilt order of
the chains, the orientational order of the backbones, and the positional order of the heads. In
the phases which coexist with the liquid expanded phase, the molecules are axially symmetric
and form a hexatic liquid. A generic phase diagram is shown in figure 1 [7].
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Figure 1. The generic phase diagram for fatty acid monolayers (according to reference [7]). LE
is the liquid expanded phase; CS and L′

2 have positional order; all other phases are hexatic liquids.
The phases Ov and L′

2 show tilt towards nearest neighbours, L2 and L′
2 tilt towards next-nearest

neighbours, and LS, S, CS are untilted. In CS, S, L′
2, and L′

2, the backbones of the hydrocarbon
chains are ordered.

Interestingly, many topological features of the phase diagram in the condensed region
(sequence and order of phase transitions, etc) can be understood in terms of generic Landau
symmetry considerations [8]. The impressive results of this approach have been summarized
nicely in a recent review article by Kaganer et al [9]. Here we will focus our attention on the
main transition, i.e., we will consider only the right-hand part of the phase diagram with the
liquid expanded phase and the coexisting condensed phases. Our goal is to explore possible
explanations of the transitions between those phases using simple idealized models. The paper
is organized as follows: first, we will review some theoretical findings, then discuss recent
computer simulations and present new results. We hope that we will convince the reader that
we are now able to understand and reproduce the relevant characteristics of the experimental
phase diagram quite satisfactorily.

2. Theory

Our theoretical work has mainly addressed the following two issues:
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(1) What is the mechanism that drives the first-order fluid–fluid transition between the liquid
expanded and liquid condensed regions?

(2) Which factors determine tilt order and tilt direction?

The first question was tackled by means of a self-consistent-field theory of a simple
grafted chain model [10,11]. The amphiphiles are modelled as stiff chains of attractive rodlike
segments attached to one head segment, which is confined into a planar surface by a harmonic
potential and free to move in lateral directions. This model indeed exhibits two coexisting liquid
phases, and even an additional tilted phase in certain parameter regions. Two ingredients are
crucial in bringing about liquid–liquid coexistence: the flexibility of the chains and an affinity
to parallel packing (chain anisotropy). A typical phase diagram is shown in figure 2.
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Figure 2. The phase diagram obtained from self-consistent-field calculations in the plane of chain
anisotropy versus molecular area. LE denotes liquid expanded phase, LS untilted liquid condensed
phase, and L2 a tilted condensed phase (after reference [9]).

Here, the phase behaviour was plotted as a function of the effective chain anisotropy. An
almost identical phase diagram is obtained if the chain anisotropy is kept fixed and the chain
stiffness is varied instead. Note that both the effective chain interactions and the effective
chain stiffness depend on the temperature. Hence, the y-axis in figure 2 can be interpreted as
a temperature axis. Our self-consistent-field calculation does not account for the possibility of
hexatic order in the liquid condensed region. This is why the phase coexistence region ends
in a critical point, where there should probably be a multicritical point followed, at higher
temperatures, by a line of continuous Kosterlitz–Thouless transitions.

Our results show that the liquid–liquid phase transition arises from a competition between
the conformational entropy of the chains, which stabilizes the expanded phase, and a
tendency to parallel alignment, which stabilizes the condensed phase. The importance of
the conformational entropy for the transition had already been demonstrated by experiments
of Barton et al [12]: if one reduces the chain flexibility by substituting for hydrogen with
fluorine, the liquid expanded phase will disappear.

Next, we address the issue of tilt order and tilt direction. The latter is a well-defined
quantity in a hexatic liquid since it lacks only positional order and retains long-range bond
orientational order [13]. We have studied tilt order in monolayers within an even simpler
model than that sketched above, namely a system of rigid rods attached to head groups that are
confined into a plane [14]. The main effects are already apparent from an analysis of the state
of lowest energy: tilting transitions can be induced by either varying the surface pressure or
the head size. In both cases, one finds a sequence of three phases: first an untilted phase (small
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heads or high surface pressure), then a phase where the rods are tilted towards next-nearest
neighbours, and finally (large heads and low surface pressure) a phase with tilt towards nearest
neighbours.

That precise sequence is found experimentally in the pressure–temperature phase diagram
(see figure 1). The argument predicts that the phase with tilt towards nearest neighbours should
be suppressed if the head groups are too small. This has indeed been observed in experiments,
where the effective head size was reduced by increasing the pH of the subphase [15], or by
replacing the COOH head groups of fatty acids by smaller alcohol head groups [16, 17].

Note that the theoretical predictions were obtained using a simple model of cylindrical
rigid rods. A much more complex ground-state phase behaviour results if in addition the rods
are given internal structure. For a model that uses rigid beaded rods, Opps et al have found a
diversified occurrence of NN to NNN phases depending on the head/tail diameter ratio, bond
lengths, and interaction potentials: the head diameters govern the overall tilting behaviour,
whereas the finer details of the phase diagram depend on the precise nature of the interaction
potentials [18].

To summarize this section, our theoretical studies have shown that much of the phase
behaviour in Langmuir monolayers can be discussed in terms of a few elementary properties
of amphiphiles: the flexible chains with their tendency to parallel packing drive the transition
from liquid expanded to liquid condensed, and the tilting transitions are driven by an interplay
between head size, chain diameter, and surface pressure.

In the next section, we will discuss computer simulations of a model which incorporates
just these few basic ingredients.

3. Computer simulations

A vast amount of activity has been devoted to the simulation of surfactant systems in general,
and bilayers or monolayers in particular. For a general account, we refer the interested reader
to recent reviews [19–21] and will only report on our own work here [22–24].

We model the amphiphiles as chains ofN beads with diameter σT , attached to one slightly
larger head bead with diameter σH , which is confined to the plane z = 0. Beads are not allowed
into the half-space z < 0. Two beads that are not direct neighbours in the same chain interact
with truncated and shifted Lennard-Jones potentials:

VLJ (r) =
{
ε((σ/r)12 − 2(σ/r)6 + vc) for r � R0

0 for r > R0
(1)

where the offset vc is chosen such that VLJ (r) is continuous at r = R0, and the cut-off R0 is
R0 = 2 σT for the tail beads and R0 = σH for the head beads. Hence, tail beads attract each
other and head beads are purely repulsive. The interactions between head and tail beads are
repulsive with the effective diameter (σT + σH )/2. Beads are connected by springs of length
d subject to the weakly nonlinear spring potential

VS(d) =

 −kS

2
d2
S ln[1 − (d − d0)

2/dS
2] for |d − d0| < dS

∞ for |d − d0| > dS .
(2)

Moreover, a stiffness potential

VA = kA(1 − cos θ) (3)

is imposed, which acts on the angle θ between subsequent springs and favours θ = 0 (straight
chains). Unless stated otherwise, the model parameters are d0 = 0.7 σT (equilibrium spring
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length), dS = 0.2 σT , kS = 100ε, kA = 10ε, and σH = 1.1 σT . In most cases, systems of 144
chains with a total length of 7 beads were studied. A preliminary discussion of chain end and
system size effects can be found in reference [23]. The simulations were conducted at constant
spreading pressure � in a simulation box of variable size and shape, with periodic boundary
conditions in the x- and y-directions.

Quantities of special interest are the collective tilt of the chains and the liquid structure.
The collective tilt is measured with the order parameter

Rxy =
√

〈[x]2 + [y]2〉 (4)

where [x] and [y] denote the x- and y-components, respectively, of the head-to-end vector
of a chain, averaged over all chains in one configuration, and 〈·〉, the statistical average over
all configurations. To study the liquid structure, we have inspected radial pair correlation
functions and the hexagonal order parameter of two-dimensional melting:

�6 =
〈∣∣∣∣ 1

6n

n∑
j=1

6∑
k=1

exp(i 6φjk)

∣∣∣∣
2〉

(5)

which measures the orientational long-range order of nearest-neighbour directions. Here the
sum j runs over all heads of the system, the sum k, over the six nearest neighbours of j , and
 jk is the angle between the vector connecting the two heads and an arbitrary reference axis.

At head size σH = 1.1 σT , we find four different phases: a disordered liquid (LE) and three
condensed phases, one without tilt (LC-U), one with tilt towards nearest neighbours (LC-NN),
and one with tilt towards next-nearest neighbours (LC-NNN). Our systems are too small to
allow for dislocations, and the molecules are almost always arranged on a defect-free lattice in
the condensed region. However, hexatic disorder may well be present in larger systems. The
phase diagram in the pressure–area plane, obtained by inspection of the order parameters Rxy
and �6, as well as by a phonon expansion at low temperatures [22], is plotted in figure 3.

We are now in a position to compare the simulations with some of the theoretical results.
Figure 4 shows examples of radial pair correlation functions for head beads and whole
chains at temperatures well below, slightly below, slightly above, and well above the LE/LC
transition temperature. One notices that the correlation function of whole chains changes
quite dramatically at the phase transition, whereas the head correlation function remains rather
unaffected. The chains maintain the order below the transition, and promote disorder above
the transition. In agreement with the theoretical prediction, one can conclude that the chains
drive the transition.

At low temperatures, the model exhibits the sequence of tilting transitions predicted by
the theory (see figure 3), with a first-order transition between the two tilted phases. At higher
temperatures, the situation is less clear. The direct inspection of several configuration snapshots
suggests that the system might pass directly from the LC-NN phase to the LC-U phase, skipping
the intermediate LC-NNN state. Unfortunately, the tilt direction fluctuates so strongly that the
average direction cannot be determined unambiguously. Simulations of much larger systems
would be needed to clarify this aspect of the phase diagram.

If one increases the head size, the region where the chains tilt towards nearest neighbours
becomes larger, as anticipated by the theory. Interestingly, this goes along with the appearance
of a new, unexpected LC-NN modification: a modulated striped phase [23]. It proves to be
extremely stable over a wide parameter region. One may speculate on their existence in real
systems.

Although the phase diagram of figure 3 is already gratifyingly similar to the experimental
phase diagram (figure 1), it still contains one obvious flaw: the pressure at the transition between
tilted and untilted phases is largely temperature independent in experiments, whereas it has
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Figure 3. The phase diagram obtained from Monte Carlo simulations in the plane of spreading
pressure � (in units of ε/kBσ 2

T ) versus temperature T (in units of ε/kB ). LE denotes disordered
phase, LC-U untilted ordered phase, LC-NN ordered phase with tilt towards nearest neighbours,
and LC-NNN ordered phase with tilt towards next-nearest neighbours. At pressures above
� = 20ε/σ 2

T , the tilt direction is unclear. (After reference [20].)

a considerable slope in the simulations. The most plausible explanation for this discrepancy
is to attribute it to the overly simple treatment of the head groups, or, more precisely, to the
rigid constraints imposed on them. The slope of the phase boundary can easily be rationalized
if one assumes that the heads are forced to absorb most of the pressure because they cannot
move out of their plane.

In order to remedy this situation, we have conducted a set of simulations where the surface
constraints are softened up and replaced by harmonic surface potentials [24]. The main results
of this study will be presented now.

The new surface potentials were chosen as follows. Head beads are subject to a potential

Vh(r) =
{

0 for z < −0.5W
−(εh/2) ln(1 − (z + 0.5W)2/W 2) for −0.5W < z < 0.5W

(6)

and tail beads to a potential

Vt(r) =
{
(−εt/2) ln(1 − (z− 0.5W)2/W 2) for −0.5W < z < 0.5W

0 for z > 0.5W .
(7)

The width W of the potential is set to 1 σT , and the strength factors εh and εt are given the
values 10ε. As we will see, the exact form of the surface potentials is not crucial.

Apart from this innovation, the model is defined as before, with the one exception that the
stiffness potential was reduced to kA = 4.7ε. This is the value which one would estimate from
the Rigby–Roe model for hydrocarbon chains [25], assuming that two carbon atoms correspond
roughly to one bead in our model. The size of the head bead was chosen as σH = 1.1 σT , as
in the study discussed above.
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Figure 4. The radial pair correlation function g(r) for the heads (a) and the projections of the
centres of gravity into the xy-plane (b) versus r (in units σT ) at spreading pressure � = 1 ε/σ 2

T

and various temperatures (in units ε/kB ), as indicated. The phase transition from LE to LC-NN
takes place at temperature T = 1.4ε/kB . The values g(r) for the temperature T = 0.1ε/kB are
rescaled by a factor of 5. (After reference [20].)

The results can be summarized as follows.
We find essentially the same phases and the same phase characteristics as before. As

an unwanted artefact of the model, one observes at low temperatures and high pressures a
double-peak structure in the head density profile ρh(z). Fortunately, the effect disappears at
temperatures T > 0.5ε/kB , and the system is well behaved in all parameter ranges of interest.



4860 D Düchs and F Schmid

As we had hoped, the transition pressures of the tilting transition at lower temperatures
drop considerably. In order to explore the sensitivity of the phase behaviour to the parameters
of the new surface potentials, we have performed a few simulation runs of systems with double
potential width W . Results for an exemplary isotherm are shown in figure 5: the phase
transition occurs at almost the same pressure in systems with potential width W = σT and
W = 2 σT . The transition pressure is much lower than that in the original model (cf. figure 3).
Hence, a dramatic lowering of the transition pressures is achieved by a mere relaxation of
the head groups. Once this lowering is accomplished, further relaxation does not have much
impact.

0 10 20 30 40
Π

0

0.5

1

1.5

R
xy

pot. width: 1 LJ length
pot. width: 2 LJ lengths

Figure 5. Collective tilt order parameter Rxy versus pressure � in units ε/kBσ 2
T at temperature

T = 0.5ε/kB for different potential widths (units ε/kBσT ) versus temperature T (units ε/kB ).

Another new feature of the model, compared with the earlier version, concerns the order of
the tilting transition. Whereas in the old version, we had no reason to doubt that it is continuous
(although this really ought to be established rigorously by a finite-size analysis, of course), the
order parameter Rxy now seems to jump between two states in the vicinity of the transition. A
typical histogram of Rxy is shown in figure 6. One clearly discerns two peaks, corresponding
to two states of different tilt order. This observation suggests that the tilting transition might
be first order. Again, simulations of much larger systems would be needed to corroborate this
suspicion.

The phase diagram of the revised model is shown in figure 7. The changes to the LE/LC
boundary compared to the earlier version (figure 3) are rather marginal; it experiences only
a small shift to lower temperatures. However, the boundary between the tilted and untilted
phases is affected in the desired dramatic way: the transition pressures at lower temperatures
drop considerably, and the slope of the transition line is now almost flat, like in experiments.

We conclude that we have established a minimal model which reproduces in computer
simulations the essential features of the experimentally observed generic phase behaviour
of Langmuir monolayers. Details of the phase diagram will still need to be established by
systematic finite-size studies. We note that long-range Coulomb and dipolar interactions have
not been included in the model so far. In the coexistence region of the liquid expanded and
liquid condensed states, the interplay between electrostatic interactions and line tensions leads
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Figure 6. Distribution of the order parameter Rxy at spreading pressure � = 15ε/kBσ 2
T and

temperature T = 1.3ε/kB .
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Figure 7. The phase diagram from Monte Carlo simulations of the model with soft surface potentials
in the plane of spreading pressure� (units ε/kBσ 2

T ) versus temperature T (units ε/kB ). LE denotes
disordered phase, LC-U untilted ordered phase, and LC-NN(N) ordered phase with tilt towards
nearest or next-nearest neighbours (undetermined).

to a variety of interesting domain patterns on a mesoscopic scale [6]. On the microscopic scale
considered here, however, these long-range interactions seem less influential. We feel that the
general agreement between the phase behaviour of the model and the experimental one is now
satisfactory enough for us to use the model as a basis for the investigation of more complex
problems.
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[24] Düchs D 1999 Diploma Thesis Universität Mainz, Germany
[25] Rigby D J and Roe R J 1987 J. Chem. Phys. 87 7285


